Girth, minimum degree, independence, and broadcast independence

نویسندگان

چکیده مقاله:

An independent broadcast on a connected graph $G$is a function $f:V(G)to mathbb{N}_0$such that, for every vertex $x$ of $G$, the value $f(x)$ is at most the eccentricity of $x$ in $G$,and $f(x)>0$ implies that $f(y)=0$ for every vertex $y$ of $G$ within distance at most $f(x)$ from $x$.The broadcast independence number $alpha_b(G)$ of $G$is the largest weight $sumlimits_{xin V(G)}f(x)$of an independent broadcast $f$ on $G$.It is known that $alpha(G)leq alpha_b(G)leq 4alpha(G)$for every connected graph $G$,where $alpha(G)$ is the independence number of $G$.If $G$ has girth $g$ and minimum degree $delta$,we show that $alpha_b(G)leq 2alpha(G)$provided that $ggeq 6$ and $deltageq 3$or that $ggeq 4$ and $deltageq 5$.Furthermore, we show that, for every positive integer $k$,there is a connected graph $G$ of girth at least $k$ and minimum degree at least $k$ such that $alpha_b(G)geq 2left(1-frac{1}{k}right)alpha(G)$.Our results imply that lower bounds on the girth and the minimum degreeof a connected graph $G$can lower the fraction $frac{alpha_b(G)}{alpha(G)}$from $4$ below $2$, but not any further.

منابع مشابه

Independence, odd girth, and average degree

We prove several best-possible lower bounds in terms of the order and the average degree for the independence number of graphs which are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum degree at most 3 due to Heckman and Thomas [A New Proof of the Independence Ratio of Triangle-Fr...

متن کامل

On the Broadcast Independence Number of Caterpillars

Let G be a simple undirected graph. A broadcast on G is a function f : V (G) → N such that f(v) ≤ eG(v) holds for every vertex v of G, where eG(v) denotes the eccentricity of v in G, that is, the maximum distance from v to any other vertex of G. The cost of f is the value cost(f) = ∑ v∈V (G) f(v). A broadcast f on G is independent if for every two distinct vertices u and v in G, dG(u, v) > max{...

متن کامل

The Independence Number of Graphs with Large Odd Girth

Let G be an r-regular graph of order n and independence number α(G). We show that if G has odd girth 2k + 3 then α(G) ≥ n1−1/kr1/k . We also prove similar results for graphs which are not regular. Using these results we improve on the lower bound of Monien and Speckenmeyer, for the independence number of a graph of order n and odd girth 2k + 3. AMS Subject Classification. 05C15 §

متن کامل

The Independence Number of Dense Graphs with Large Odd Girth

Let G be a graph with n vertices and odd girth 2k+3. Let the degree of a vertex v of G be d1(v). Let (G) be the independence number of G. Then we show (G) 2 ( k 1 k ) "X v2G d1(v) 1 k 1 #(k 1)=k . This improves and simpli es results proven by Denley [1]. AMS Subject Classi cation. 05C35 Let G be a graph with n vertices and odd girth 2k + 3. Let di(v) be the number of points of degree i from a v...

متن کامل

Approximating the Minimum Maximal Independence Number

We consider the problem of approximating the size of a minimum non-extendible independent set of a graph, also known as the minimum dominating independence number. We strengthen a result of Irving [2] to show that there is no constant > 0 for which this problem can be approximated within a factor of n 10 in polynomial time, unless P = NP. This is the strongest lower bound we are aware of for po...

متن کامل

Semi-regular graphs of minimum independence number

There are many functions of the degree sequence of a graph which give lower bounds on the independence number of the graph. In particular, for every graph G, α(G) ≥ R(d(G)), where R is the residue of the degree sequence of G. We consider the precision of this estimate when it is applied to semi-regular degree sequences. We show that the residue nearly always gives the best possible estimate on ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 2

صفحات  131- 139

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023